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Thermodynamic limit in the elastic triangle: Pade approximants
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The equilibrium properties of a triangular pile Nfrows of particles, interconnected by linear springs and
subjected to gravity are explored. A preliminary algebraic investigation of the dinallue case suggests that
the particle displacement field can be represented by low order &gmeximants[1,1] Padeapproximant
representations are introduced for the horizontal and vertical displacement field components. Each representa-
tion contains three polynomials in the particle position coordinates. In the vertical displacement case the
polynomials are successfully fitted to numerical solutions of the equilibrium equations. The resulting expres-
sion exhibits a thermodynamic limit with N/ corrections. This procedure fails in the horizontal case. It is
suspected that a higher order Paggroximant is required.
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I. INTRODUCTION knowledge, this is first reported use of Paggroximants in
a thermodynamic limit discussion.

In two earlier paper$l,2] we discussed the equilibrium The triangle model and the equilibrium conditions are de-
properties of a triangular pile of particles, interconnected byscribed in the following section. The results of tihePLE™
linear springs and subjected to the force of gravity. In Refanalysis are given in Sec. Il A. The Padgproximant is
[1] the equilibrium state was determined from a numericalintroduced in Sec. II1B and applied to the problem of the
analysis of the particle equilibrium conditions. The resultshorizontal and vertical shifts in Secs. IIC, IID, and IlE.
showed(a) an unexpected richness in behavior in a simpleSection lll contains a brief summary of our results.
model and(b) evidence of a thermodynamic limi8,4] in
triangles with~100 layers. Previous woifl6—8] on the ther- Model
modynamic limit has been restricted to homogeneous sys-
tems in uniform equilibrium states. With the pile model we
have a quite different situation, namely, a homogeneous sy

tem in nonuniform equilibrium. In the second paper, R2f, . ' L ;
plicle has a common massand is connected to its six neigh-

we attempted to obtain an algebraic solution to the equili bors by i . Th ; h ilibrium | h
rium problem of the triangle of particles. We used perturba- ors Dy linear springs. The springs have equilibrium lengths

tion theory based on the supposition that some springs az a’ and spring constar)tls, A the_ '””?r.af?g'e . We
weaker than others. The zero order solutions did exhibit therNiroduce a set .Of Cartesian axes with origin in the m|dQIe of
modynamic limit behavior; we found that corrections to thelN€ Pasex, axis through the base particles amgl axis
thermodynamic limit dropped inversely as the number ofirough the apex. The parametasa’, ¢ can be used to
rows of particles in the triangular array. In contrast, the firstntroduce scaled position coordinates,

order solutions turned out to be unsatisfactory, in as much as

the expansion parameter proved to be a function of the size (n-1,s-1) (n-1,s)

of the triangle—an inappropriate result for a thermodynamic

Consider a regular, triangular array of particles with
Jows. We label the rows=1,2,... N and the particles
within a row from the lefts=1,2, ... n, Fig. 1. Each par-

limit discussion. _(n,8)
In the present paper we describe another attempt to obtain -

an algebraic solution to the equilibrium conditions. We return

to the homogeneous model of R¢L] and explore, using (ns-1) @~ (n.st+1)

MAPLE™, the algebraic nature of the equilibrium solution. @ )C)’//

We are restricted by computing capacity considerations to ’ — @M

sizes of triangles well below the thermodynamic limit seen in

Ref. [1]. However, the results we obtain suggest that Pade (n+1,5) (n+1,5+1)

approximant$9,10] could provide suitable representations to
describe the equilibrium solutions for triangles beyond the £, 1. Triangular array of particles and springs in equilibrium
algebraic scope oiAPLE™. We explore this avenue using a in the absence of gravity. The rows are labelee;1,2, ... N and
mixture of [1,1] Padeapproximants and numerical solutions the particles within rows are labeles=1,2, ... n. The bottom

to the equilibrium conditions. This tactic proves to be satis-row, n=N, is in contact with a solid smooth line. The springs
factory for the field describing the vertical shifts of the par- connecting particles between rows are characterized by unstretched
ticles but is unsatisfactory for the horizontal shifts. To ourlengtha, spring constank, and the in row springs bya(,\').
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x;=(2s—n—1)/N, x,=(N—n)/N, (1) N2 pH(X1,%2,7)
Up(X1, X2, Y) = — —— >
with scale factorsNacos6, Nasin 6, respectively, see Ref. Y $o(7)
[2]. Thus the particle at the lower right-hand corner has co
ordinates (X 1/N,0) and that at the apex coordinat@sl).
This two-dimensional plane array of particles is in equi- r
librium under the actions of the unstretched springs. Now let dy=> ¢V, (6)
us suppose thafa) gravity is switched on and acts in the 1=0
direction of the negativet, axis and(b) the bottom layer of

©)

where theg'’s are polynomials in the parametgof the form

r
particles is supported to prevent any vertical motion of the N 1 |
row of n=N particles. The particles have new equilibrium ¢1_|§0 C'( (x1.%2) 7, @)
positions. Let the shift in equilibrium of then(s)th particle
be denoted by the dimensionless pair of componentand
[uqi(s,n),us(s,n)], with scale factors, rig/\)/(sin 6 cosé) i1

and (mg/\)/sir? 6, respectively, see Reff2]: g is the accel- N_S o |
eration due to gravity. These displacements are determined ¢2—|:0 ¢ (X1, X2) ¥ (8)
by the set of equilibrium conditions for the particles in the
triangular array. For an interior particle the equilibrium con-The upper limits for the sums are
ditions take the form, see RdR] in the horizontal direction

r=N(N—2)/4, N even and r=(N—1)%4, N odd.

0=19[uy(n,s+1)—2uy(n,s)+uy(n,s—1)]+[us(n—15) 9)
+ui(n=1s=1)+uy(n+1s)+uy(n+1s+1) We may think of#), ¢) as fields within the triangle.

— 4uy(n,s)]+[Up(n—15)—up(n—15—1) In the case ofy and fixedN, the coefficientsc(®) in-

crease in magnitude with increasing indexintil about|

Tuz(nt1s)—uy(n+1ls+1)], (2 ~r/2 and then decrease. The maximum valuecff in-

creases dramatically with increasing sizeNofFor example,
in the caseN =8, ¢8 is a polynomial of degree 12; the maxi-
mum coefficient has a value-10* and occurs for they®
term. In the cas®&l= 20, the polynomial is of degree 90 and
—uy(n+18+1)]+[uxy(n—18)+uy(n—1s—1) the maximum coefficient has a valael0'° for the y” term.
In the case of the other twep's, @), #5, the sets coeffi-
cientsc{!), c¢2 vary across the trianglé7), (8) but exhibit
the same pattern, i.e., maximum values occurring at about
~r/2 and dramatic increases with increasig

y=\" se@ 6/\. (4) We know from the numerical solutions described in Ref.

[1] that the fieldse)/ ¢y and ¢/ ¢ are independent dfl
The spring constants, ' are positive quantities and hence for large enoughN. This result appears, at first sight, to be at
y=0. The equilibrium conditions for particles on the edgesodds with the polynomial properties noted abaigggnificant
of the triangle have different forms from Eq®), (3). They  changes with increasindy). To explore this point further,
can be found in Refl1]. consider the special case of the displacement of the corner
The solutions to the equilibrium conditions for tihgN

+1)/2 particles are functions of position coordinatgsx,, ~ TABLE I. Real roots of the two polynomialgg and 45 [Eq. (5)].
pile sizeN, and the ratioy, Eq. (4). The effect of gravity

and in the vertical direction

1=[uy(n=1s)—uy(n—=1s—1)+uy(n+1ys)

+uy(n+1,s)+uy(n+1s+1)—4uy(n,s)], 3

where

occurs through the displacement scale factors listed in the bo $1
previous paragraph. —0.1685 —0.1659
) —0.2644 —0.2997
Il. PADE APPROXIMANTS [9,10] —0.4411
A. Algebraic solutions —0.6048
_ o -0.7318 —0.7870
The programvaPLE™ can be used to obtain explicit al- —1.1435
gebraic expressions for the solutions to the triangle equilib- —1.3959 —1.3958
rium cono_lltlons forN=20. Utilizing this program we find — 26707 — 26881
the following results. _
The equilibrium soluti f the f 3.0734
e equilibrium solutions are of the form _6.7707 81921
NE ¢N(X X2,7) —13.3870 —13.7176
Up(Xq Xp,y) = — 2 —25.6843 —25.5090

y  dy(y)
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TABLE II. Exact and approximate results for the horizontal dis- and vertical displacements wift,1] Padeapproximants and
placement of the N,N) particle for four differentN’s and two  (b) determine the position and dependence of the corre-
different spring constant ratios. All the results were obtained fromsponding six functions from various numerical solutions to

MAPLE™. the equilibrium conditions. With this approach we hope to
- explore, in particular the manner in which the system reaches

N Solution y=04 y=4.0 the thermodynamic limit.
8 Exact 0.232 757704 2 0.027 146 109 70 ]

[5,5] 0.2327577047 0.027 146 098 B. Padeapproximants

[1,1] 0.2331 0.027 07 We assume that the displacement solutions to the pile
12 Exact 0.241222774 0.029390 667 44 equilibrium conditions can be written in thé&, 1] Padeform

[5,5] 0.242 1222798 0.029 39058

[1,1] 0.242 69 0.02923 Ux(X1,X2,N,y)
16 Exact 0.247 1393952 0.030 744 348 42 N2 1+ (y— 1)K (X1, X,N)

[5,5] 0.247 139399 1 0.030 744 21 = — [ Hy(X1,X2,N) ,

[L1] 0.24783 0.03051 4 1+ (y=DLo(x1.%2,N)
20 Exact 0.250318 3835 0.031650637 41 —19 (10)

[5,5] 0.2503183890 0.03165024 Z=Le

[1.,1] 0.2511 0.03135 Thus, in this approximationy,, u, are described by six

functions,H,, H,, K4, K5, Ly, andL,. In the special case

. . . : . . =1, Eq.(10) reduces to
particle, (N,N) in the triangle withN=38. For this particle Y a.(10

u,=0 and ¢5, ¢2 are polynomials of degree 12 in The U (X1 X0 N, D) =N2H (X1 %o, N),  z=1,2.  (11)
real roots ofg§, ¢3 are given in Table I. We note théa) all

the roots of¢, are negative antb) for most of the roots of Thus Eq.(10) can be rewritten in the form

¢o there is a similarly sized root ip,. We discuss the

consequences #) in the Appendix. Given properti) and | o\ Uz(X1,X2,N, 1) 1+ (y— DKy(Xq,%2,N)
positive values ofy (the appropriate physical range for a 2 1'"2 Y y 1+ (y—1)L,(X1,%X5,N)
ratio of two positive elastic constantswe can expect an

approximate cancellation of these pairs in the raﬁ@jqﬁf. z=1,2. (12
This “approximate cancellation” reduces the ratio of two

high order polynomials to a ratio of two lower order polyno- C.H,andH,

mials. Similar results were obtained for different sizes of o N ) ]
triangles. In our view the cancellation process described The equilibrium conditions for alN=116 triangle with
above is a likely explanation of the thermodynamic limit ¥=1 were solved numerically with a Gauss-Seidel scheme
behavior seen in general in the ratios of polynomials in Eq[11]. Equilibrium data, correct to seven places, were obtained
(5) [1]. We note that the three polynomialsy , ¢\, and$) for the case of a 116 layer trianglabout 5000 iterations are
are simply related to an equilibrium matrix array and its co-"¢eded fo achieve this accuracyhe resulting 3 335 values
factors, see the Appendix, and thus the thermodynamic limif U1/N” for x,=0 were used to generate the contour plot
behavior is a direct consequence of properties of this matrixNown by the solid lines in Fig. 2, These contours describe
The cancellation process also suggests that one might sefle functionHp(x3,xz,N=116), Eq.(11). The analogous
displacement representations in terms of ratios of low ordefe€sults for the vertical displacement functify (x;,xz,N
polynomials iny. This is a well-recognized technique; the =116) are shown in Fig. 3. _
ratios are referred to as Padpproximantg9,10]. We investigated théN dependence ofi,, H, (for fixed

To explore the feasibility of a Padmproximant represen- X1, Xz) in the following fashion. Consider the particle with
tation, consider again the corner partiteN) with displace- labelsn=58,s=44 in theN= 116 triangle. This particle has
mentu;. We usedvAPLE™ to obtain an explicit power se- coordinateg1/8,1/2, Eq.(1). As we reduce the size o, we
ries expression in ¥—1) for the quantity yu,/N2 find no particle WlthpreC|s_erf[hese coordlna_ltes u_nt|l we
— ¢?/¢Q, Eq. (5). We then applied thelaPLE™ Padepack- reach the value 108. In this tr'|angle the particle ywth labels
age to this series to calculate thg 1] and[5,5] Padeap- N=9°4 5=41 has these coordinates. In general, if the layer
proximants. We show the results for two differeptvalues ~ Number has the form

and four different triangle sizdd in Table Il. From this data _ _
we see that th¢l,1] Padeapproximant represents the dis- N=8p+4, p=123..., (13
placement with better than 1% accuracy. then the particle with labels
As we have noted above, theaPLE™ algebraic program
will not give solutions to the equilibrium conditions fod n=4p+2, s=3p+2, p=123... (14)

>20, i.e., well before the thermodynamic limit behavior seen
in Ref. [1]. To explore the properties of displacements inhas coordinates position coordinatd$8, 1/2, see the line
larger piles our strategy will be t@) represent the horizontal fourth in Table IlIl. The equilibrium conditions for the 11
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0.91 2 - 0.91 0.91 2 - 0.91
- u,/N 4 l u, /N i
0.83 |- Hw - 083 0.83 }» H°° H o083
n ) _ L 1 _
0.74 - , 020 - 0.74 074 k 0.00 - 0.74
L/ i == §
066 = , 4 0.66 0.66 |- - 0.66
L -0.16 - } 4
0.58 | -{ 0.58 0.58 - 0.58
X 0.50 X_  0.50 t - 0.50
2 2
0.41 0.41 }» — 0.41
- 0.33 0.33 r = 0.33
0.25 0.25 ; = 0.25
0.17 017 | - 0.17
0.08 0.08 - 0.08
. 0.00 0.00 0.00
0.00 0.08 0.17 025 033 042 050 0.00 008 017 025 0.33 042 050
X
1 X

1

FIG. 2. Solid lines depict a contour map of the vertical displace-
ment field scaled by N?. The field values are obtained from nu-
merical solutions to the equilibrium condition&), (3) plus (20),
(21), (22) in Ref.[1] for the caseN=116, y=1. The dashed lines
depict a contour plot of the functiod; described by the six term
polynomial representation, E¢R1). The coefficients in this repre-
sentation are determined by the leading term in the limiting form
(15) for each of the vertical displacements in the last six lines of
Table Il1.

FIG. 3. Solid lines depict a contour map of the horizontal dis-
placement field scaled byNf. The field values are obtained from
numerical solutions to the equilibrium conditiorig), (3) plus(20),
(21), (22) in Ref.[1] for the caseN=116, y=1. The dashed lines
depict a contour plot of the functiod; described by the six term
polynomial representation, E¢R0). The coefficients in this repre-
sentation are determined by the leading term in the limiting form
(17) for each of the horizontal displacements in the first six lines of
Table III.

triangles withN= 108 toN= 20 in steps of eight were solved
numerically with the Gauss-Seidel scheme. The 12 values o
H,(1/8,1/2N) are shown in Fig. 4. The straight line through H,=H?, z=12, (19)
the larger values is described by the function

e note that, from these data

e to better than 1% foN>100 and the corrections to the ther-
Ho=H;+H3/N, (19 modynamic limit drop off inversely with\.
There are other points in the triangle with precisely the
same coordinates as we vary the layer numtday certain
(16) amounts. We list other seven in Tab_le lll. The same process
was carried out for each of these points and obtained similar
The analogous results for the horizontal displacements af@Sults; at €ach position in the triangle béth andH, have
also shown in Fig. 4. The straight line is described by theNe form of Egs(15) and(17), respectlv_ely, and the relation
function (19) holds(to better than 1%at the maximuniN value used,
see Table lll. If, as seems likely, E(L9) holds at each point
Hy=H7+HI/N, (17)  inalarge (\>100) triangle the solid line contour maps in
Figs. 2 and 3 describe the position dependencéldfand
with parameters HT, respectively. Because the contours in Figs. 2 and 3 are
smooth, slowly varying functions of position we attempted to

Hy=0.016592, H,=-0.014018. (18)  represents andH; by six term polynomials in; ,x,.

with parameters

H%=-0.1837, H4=0.11009.
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00166 L0178 ment data for the last six lines in Table Ill. The values of the
] 8 coefficients are shown in Table IV. With these values we
generated the dashed contours in Figs. 2 and 3. We conclude
-0.179 from these two figures that, aside from regions near the pe-
rimeter of the triangle, the six term polynomials, E¢20)
and(21), give good representations fbi; andH> . We also
fitted the two coefficient$i; ,H,, Egs.(15) and(17), to six
term polynomials cf. Eqs.20) and (21) using the data from
the first six and last six points, respectively, in Table Ill. The
polynomial coefficients are given in Table IV. The resulting
contour maps oH;,H; are shown in Figs. 5 and 6. It is
0182 interesting to note thaktl;~—1.2HT andH,~—0.6H; at
each point in the triangle, compare Figs. 3 and 5 and Figs. 4
and 6.

0.0164 -

-0.180
00162

-0.181

0.0160

-0.183

ooiss
D.K,and L,

To determine the functions in the numerator and denomi-
FIG. 4. The asterisks indicate the pointd (1), lef-hand  nator of the Pad@pproximant form in Eq(10) at a given
scale.H,;=u, /N2, whereu; is the numerical solution to the equi- POint X;,X, in a given triangleN, we calculate the three
librium conditions for the positio(1/8,1/2 in the triangles with  displacements u,(X;,X,N,1),  u,(X{,X»,N,y), and
N=28,36...,116. The straight line, Eq17), passes through the u,(X;,X,,N,y"), with y#vy'#1 and use these values to
N=116,108 points with slope and intercefi). The filled circles  solve Eq.(12) for the pairK,,L,.
are obtained from the analogous vertical case with right-hand axis, For example, we numerically calculated the vertical dis-
straight line(15) and slope and intercept6). placements at the poirtl/8,1/2 in the N=116 triangle for
the three valuey=1.1,1.0,0.9. Using Eq.12) we find

Consider the properly symmetrized forms
K,=0.63284~0.000 03, L,=0.0179+0.000 03. (22
HT =230+ 55X Xo + 21X, X5+ 8o + Ay X X5 + 83 1X3Xs, . .
(20) The error estimates in Eq22) are a consequence of the
uncertainty in the eighth place in the original equilibrium
H°2°=801X2+a02X§+ a03x§+ 321X§X2+ ao4X§1+ asziXS. data. Equation(12) is based on the assumption of{ &1]
1) Padeapproximant for the displacement, H40). As a check
on the assumption in this case we adopted the values in Eq.
The six coefficients in E¢(20) were determined by equating (22) and used Eq(10) to calculate the displacements at the
this function with each of the set of sk} values obtained point(1/8,1/2 for N=116 and a variety of values. We then
from the horizontal displacement data for the points in thecompared the results with the corresponding displacements
first six lines of Table Ill, The six coefficients in Eq21) obtained from a numerical solution of the equilibrium equa-
were obtained in a similar fashion from the vertical displace-tions. As a measure of the error we introduce the quantity

TABLE Ill. Points in the triangle used to generate the polyno- ub(x1,%2,N,7)
mial representations for the functions appearing in[thd] Pade = m_ ’ (23
approximant forms. The entries in the second column genepate,
=1,2,3..., thetriangles in which there is a particle sitting exactly

whereug is the Padeapproximant, Eq(10), [with H,=H}
given in Eq.(16) andK,,L, given by Eq.(22)] andu, the
vertical displacement obtained from a numerical solution to

on the point in the position in the first column. The third and fourth
columns contain the correspondingnds values. The last column
contains the large$t value used in the thermodynamic limit fitting,

(15), (17), (24), (25). the equilibrium conditions. The results of the check are
shown in Table V. We see that, at this point in the triangle,
Point N n s Nmax the[1,1] Padeapproximant is good to 1% or better forin
the rangg0.4,4).
(1/4,0 4p+2 4p+2 3p+2 114 This calculation was repeated for each of the remaining
(13,0 6p+3 6p+3 S5p+3 117 3421 particles withx,=0, in the 116 layer triangleX,,L,
(1/12,2/3 12p+6 4p+2 3p+2 114 were calculated from the=1.1,1.0,0.9 displacements, see
(1/8,1/2 8p+4 4p+2 3p+2 116 Eqg. (12). The results are shown as contour plots in Figs. 7
(1/6,1/3 6p+3 4p+2 3p+2 117 and 8. As a check on the validity of the Paajgproximation,
(3/10,1/9 10p+5 8p+4 Tp+4 125 we calculated the error measure, E2R3), for the 3422 par-
0,112 4p+2 2p+1 p+1 114 ticles in the triangle withy=4. All but 15 particles had error
(0,1/4) 8p+4 6p+3 3p+2 116 measures less than 0.05. The 15 patrticles lie in the lower

right corner of the triangle and have errors in the range
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TABLE IV. Coefficients of the polynomial representations fof , H;, H7, H5, K7, K, L5, andL,
defined in Egs(17), (15), (24), and(25).

Xy X1Xo X1X5 X3 X1%3 XX,
HT 0.3720 0.1404 —1.8083 —0.5080 1.2224 —0.6046
Hji —0.6439 0.5717 1.8171 0.5642 —1.8191 1.3044

X, X3 X3 X3X5 X3 x2x3
H> —0.5409 0.082 86 0.6243 2.4306 —0.4254 —1.1262
H, 0.3893 0.1067 —1.2864 —2.8064 0.9990 25131

1 X, X5 x5 X3X, X
K3 0.7184 —0.3096 0.2221 0.7180 0.6084 —0.0301
K5 —0.8706 5.775 —13.210 1.3852 —3.8568 9.563
Ly 0.007 56 0.1947 —0.4648 —0.1556 0.2498 0.2440
L, —.6797 6.171 —13.674 —0.1698 —1.7302 9.686

(0.05,0.63. For y=0.4 a similar calculation yields 28 par- To begin the discussion of the larjgbehavior ofK,, L,
ticles in the lower right corner with errors in the range we consider again the particle at the poii{8,1/2. The
(0.05,0.25; the remaining error measures are less than 0.05values ofK,,L, for N=116 are given in Eq(22). We re-

We conclude that, for 99.2% of the particles in the triangle peated this calculation for the same point for each of the six
the[1,1] Padeapproximant, Eq(10), represents the vertical triangles withN=108 to N=68 in steps of eight, see Egs.

displacements to better than 5% in the range<Oy4<4.0. (13), (14), and the associated discussion. gL, values
091 - o.91
0.91
0.83 - -1 0.83
— 0.83
L H! -
0.74 1 - 0.74
~ 0.74
0.66 — 0.66
— 0.66 \
0.58 - 0.58
0.58
X 0.50 - 0.50
Xz 0.50 2 -0.02
0.41 — 0.41
0.41 ~0.04
©
0.33 ~of - 0.33
0.33 i oo |
0.25 - ot - 025
0.25 L /0-,\7_ i
017 -1 0.17
0.17 //
0.08 |- — 0.08
0.08
0.00 [ WA WEA A/l 0.00
0.00 0.00 0.08 0.17 025 033 041 0.50
000 008 0.17 025 033 041 050
X : Xl

1

FIG. 5. A contour plot of the functiotd;, described by the six FIG. 6. A contour plot of the functioi; described by the six
term polynomial representation, ER1). The coefficients in this term polynomial representation, EQ). The coefficients in this
representation are determined by ¢ term in the limiting form  representation are determined by ti¢ term in the limiting form
(15) for each of the vertical displacements in the last six lines of(17) for each of the horizontal displacements in the first six lines of
Table III. Table III.
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TABLE V. Error, Eq.(29), in the[1,1] Padeapproximant, Eq(10), for the vertical displacement at the
point (1/8,1/2 in the triangleN=116 for different spring constant ratios. TKg, L, values, Eq(22), are
calculated from the displacements whea1.1,1.0,0.9.

Y 4.0 2.0 1.3 1.2 0.8 0.7 0.4

A —12x102 -24x10°% —-11x10* —3.0x10° 4.9x10°° 2.3x10* 3.4x10°°

are plotted as functions of N/in Figs. 9 and 10. From these The same process was carried out for the vertical displace-
graphs we conclude that for large triangles at the pointnents of the remaining five of the last six points listed in

(1/8,1/2 Table Ill. We find that at each poir, and L, have the
forms shown in Eqs(24) and(25). However, in contrast to
Ko,=K5+KA5/N, (24)  theH-function case, see E{L9), atN~ 100,K, differs from
K3 by about 5% and., from L3 by about 20%. The six
L,=L%+LJ/N, (25) va!ues ofK, were fitted to a six term polynomial represen-
tation of the form
with K3 = bog+ bopXa+ boX5+b20X5 + b XX+ b3, 28
28
K5=0.6312-0.0002, K5=0.180.02, (26)
The calculated coefficients are shown in Table IV. We car-
L*=0.0185-0.0001, L,=—0.07+0.005. (27) ried out the same fitting process f&r,,L5 L. The corre-
2 — Y. . y 2— . — V. .
0.91 - :091 0.91 - - 0.91
.- ] 0.83 I~ — 0.83
083 |\ - 0.83 i L2 |
0.75 |- K2 4075 0.7 _j 707
0.66 L } Joss 0.66 - 0.66
0.58 : : 0.58 058 f— 708
. (!'3, N —
- o -]
X - 0.50
X2 0.50 J — 0.50 2 |
-1 0.42
0.42 oq-"x \ - 0.42 ]
— ) — 0.34
0.34 - - 0.34
i | ] :
— 0.25
025 - & 4 0.25
— \ ] .
017 4 0.17 7017
S _ 1
0.09 | % AR - 0.09 0.9
L o o < B .
0.01 L / L % — L 0.01 %% 00 I oés I 016 025 033 041 049"
0.00 0.08 0.16 025 033 0.41 0.49 ’ ’ ’ ’ ’ ’ ’
X ' X
1 1
FIG. 7. A contour plot of the quantit), in the Pade[1,1] FIG. 8. A contour plot of the quantity, in the Pade[1,1]

approximant for the vertical displacement, E&j0). TheK, values  approximant for the vertical displacement, E&0). ThelL, values
used to generate this map were obtained by solvindkfpandL, used to generate this map were obtained by solvindfpandL,

from Eg. (12) using the vertical displacement fer=1.1,1.0,0.9 at from Eq. (12) using the vertical displacement fe/=1.1,1.0,0.9 at
each of the 3421 particles in the right side of thie 116 triangle.  each of the 3421 particles in the right side of thie 116 triangle.
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0.6344 -
] ¥
0.6340 -
E ¥ FIG. 9. The asterisks indicate the points
K ] (K5,AN). K, is the Pade[1,1] function, Eq.
2 06336 (10), calculated from the vertical equilibrium dis-
] ¥ placements for the positiofil/8,1/2 in the tri-
] angles withN=68,76 . .. ,116 and thevaluesvy
] =1.1,1.0,0.9. The straight line, E4), passes
] through theN=116,108 points with slope and
06332 intercept, Eq(26).
0.6328 - LI B AL N B | L L L L | TrrrrrrrrrT { LI L L
0.008 0.010 0.012 0.014 0.016
I/N

sponding coefficients are also given in Table IV. The contour28). Similar remarks hold for the pair of maps in Figs. 8 and

maps generated by the six term polynomial representations2. Here theL,~L5 approximation is even less satisfactory,

for K5 ,L5 ,K;,L; are shown in Figs. 11, 12, 13, and 14, see above.

respectively. The results described above suggest that the Ihrde-
Figure 7 displays a contour map kK calculated from all  havior of the vertical displacements can be written in the

the vertical displacements in a triangle with 116 layers; inform

contrast, Fig. 11 is a contour map Kf, generated from a N2

polynomlal representation base_d on the IaNgbeha\{lor of Us(Xq X0, N, y) = — [HZ+H,/N]

the vertical displacements of six particles. The differences Y

between the two maps are in part due to the fact tat

~K3 is a poor approximation di=116 and in part due to Ly~ DK TK3/N)

= , (29
the inadequacy of a six term polynomial representation, Eq. 1+(y—1)(L3+L,/N)
00180 o
00179
1 FIG. 10. The asterisks indicate
] the points (,,1N). L, is the
00178 Pade[1,1] function, Eq.(10), cal-
: culated from the vertical equilib-
L ] rium displacements for the posi-
2 ] tion (1/8,1/2 in the triangles with
00177 3 N=68,76...,116 and thealues
] y=1.1,1.0,09. The straight
] line, Eq. (24), is a least square
] fit through the points N
0.0176 ] =116,108,100,92 points with
] slope and intercept, E¢26).
0.0175 u rrrrrrrrrrrrr T T T T T T T T T T T T I£ T T T T T7]
0.008 0.010 0.012 0.014 0.016

I/N
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091 7 09! 0.91 - o9t
083 I 7083 0.83 - 0.83
I K ] i
074 L ) 4074 0.74 - 0.74
0.66 - 0.66 0.66 1 oes
0.58 - 0.58 oss . - 0.58

X 050 - 0.50 X |
0.50 0.50
2 - B 2
041 7041 0.1 | Q025 - 0.1
- N - -
0.33 —2 - 0.33
. : 0.33 - 0.33
. _
| & -
025 I of 025 '0.25 4 0.25
- S - 0.1
017 I oS 0.17 0.17 : < 4017
1 v 0.08 ' ]

0.08 | o o) Q@v ) 0.08 - 0.08
0.00 ' L L Ll LL | /l 0.00 0.00 L1 ] (A e 0.00
0.00 0.08 0.17 0.25 0.33 041 050 00 0 008 017 025 033 o041 050
X X

1 1

FIG. 11. A contour plot of the functiok5 described by the six FIG. 12. A contour plot of the functioh; described by the six

term polynomial representation, E(8). The coefficients in this (€M Polynomial representation, see E@8). The coefficients in
representation are determined by % term in the limiting form this representation are determined by g term in the limiting

(24) for each of the vertical displacements in the last six lines Ofform (25) for each of the vertical displacements in the last six lines
Table I11. of Table Il

whereH3 , H;, K5, K5, L5, andL, are functions only of displacement fieldi, for yin the range(0.4,4.0. We expect

position. Thus in the thermodynamic limit of arbitrarily large that additional terms in the polynomial representations would

N the vertical displacement is give closer agreement with the numerical solutions to the
equilibrium conditions.

NZHZ (Xq,X) [ 1+ (y—1)KZ(Xq,X5)
Y 1+ (y=1L5(X1,Xp) |
(30

E.K;yand L,

There are two potential problems with tfig 1] Padeap-
proximant representation in E(L0). The first problem is a
practical one. IfK, andL, are close in value, then E¢L2)
and the correction to thermodynamic limit drops off in- gives
versely withN. As a check on the adequacy of the six term
polynomial representations f&t; ,K;,L5 ,L;, Table IV, we (y—1)8
used the expression in ER9) plus the polynomial repre- YU,(N, V/U(N D=1+ ———
sentations to calculate,/N? for the particles in anN 1+(y-1L,
=116 triangle andy=4.0. The results are shown as dashed
lines in the contour map Fig. 15. The solid lines are obtained
from a numerical solution of the equilibrium conditions for where K,=L,+ & and |§|<1. When §=0, K, and L, are
the same system. The analogous comparison for the gaseindeterminate. Whens is very small but not zero, then
=0.4 is shown in Fig. 16. These two figures indicate that theyu,(N, y)/u,(N,1) can differ from unity by an amount com-
six term polynomial representations plus the Peld&] form  parable to the numerical error in this ratio, i.e., there can be
provide an adequate algebraic representation for the vertical significant degradation in accuracy when we apply(E2).

UDZC(Xl 1X2 ’ 7) =

(31)
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0.91 - 0.91 0.91 : - 0.91
0.83 - 0.83 083 F— - 0.83
_ - L |
0.75 075 0.75 2 - 0.75
— :/ —
0.66 -1 0.66 0.66 - 0.66
_ N ot -
0.58 - 0.58 0.58 — 0.58
X 050 + 050 X, oso0 - Jo.50
2
0.42 -} 0-42 0.42 |- - 0.42
0.34 - 0.34 0.34 |- — 0.34
0.25 025 0.25 —\ - 0.25
L -0, ]
0.17 017 0.17 :‘\ - 017
i T2\ ]
0.09 - 0.09 T _
0.09 04 \% 0.09
0.01 el . g 01 0.01 TR -~ I I 0.01
0.00 008 0.16 0.25 033 041 049 " 000 008 016 025 033 041 049
X X,
1

FIG. 13. A contour plot of the functioK, described by the six FIG. 14. A contour plot of the functioh described by the six
term polynomial representation, see E88). The coefficients in  term polynomial representation, see Ea8). The coefficients in
this representation are determined by i term in the limiting  thjs representation are determined by theterm in the limiting

form (24) for each of the vertical displacements in the last six linesfgm (25) for each of the vertical displacements in the last six lines
of Table IlI. of Table IlI.

to two differenty values to determin&, andL, (this is the

approach used successfully in the preceding section to obtain N contrast, both problems occur in the horizontal dis-

Ky,Ly). placement case. Following the approach described in Sec.
The second potential problem is the existence of singull D, we calculated the horizontal displacements for
larities. If at a given pointXy,x,) in a given triangle witt(h ~ =1.1,1.0,0.9 and used them to determine the quantities

layers, K,..,L, for each particle in the right side of the triangie
=116. Three significant observations were made.
1+ (y—1)L,(X1,X)=0 (32 (@) Along the linex,=1/4, K;~L,. As a consequence,
significant loss of accuracy occurred in the region about this
» ) line.
for some positive value of then the[1,1] Padeapproximant (b) The contour maps oK, and L, are distinctly more

is infinite and so fails as a representation for the displaceznyoluted than those fd€, andL,, Figs. 7 and 8. As a

ment componentswhich we know to be finite fory>0). eyt six term polynomial representations are likely to be
Equation(32) has the following propertiedi) If L<O then quite inadequate.

y>1, (i) if 0<L<1 then y<0, (iii) if 1<L then O<y (c) There are regions in the triangle in whith<0 and
<1. Since the physics of the system requiges0, there isa  gther regions in which £ L, . These give rise to a number of

potential for a singulaf1,1] Padeapproximant only when singular Padeapproximant representations in the range 0.4
L<0 and I<L. = y=<4.0.

In the case of the vertical displacementsi0,<1 andL,
is distinctly smaller tharK, everywhere in the triangle and While (a) and(b) are merely computational inconveniences,
hence neither of these problems occurs in the vertical diswhich could be circumvented, observati¢r) destroys the
placement field. viability of the [1,1] Padeapproximant as a representation
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091 = 2 - 0.91 091 2 - 0.91
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FIG. 15. Contour map; solid lines describe the fisld N? cal-
culated from the equilibrium conditions for tié=116 and spring
constant ratioy=4.0; dashed lines describe the fieJ@VNZ calcu-
lated from the[1,1] Padeapproximant form, Eq(10), with the
polynomial representations fdd5, H,, K5, K5, L3, L;, see
Table 1V, andN=116.

FIG. 16. Contour map; solid lines describe the figld N? cal-
culated from the equilibrium conditions for thé=116 and spring
constant ratioy=0.4; dashed lines describe the fiealgi’N2 calcu-
lated from the[1,1] Padeapproximant form, Eq(10), with the
polynomial representations fdd5, H;, K5, K5, L3, L5, see
Table IV, andN=116.

for the horizontal displacement field. If we are to use 'Padei/N_
approximants fowuq, it must be of higher order. In view of
the singularity problem ifl,1], the[1,2] approximant is the

most likely candidat¢12]. We shall not pursue this problem
here.

In the case of the horizontal shifts, the 1] Padeap-
proximant fails because of the presence of singularities in the
ratio of spring constants.
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librium displacement shifts in thid layer triangle of particles
with [1,1] Padeapproximants andb) representing the func- APPENDIX
tions in the approximants by six term polynomials in the
position coordinates of the particles. The program worked Consider the dynamics of the particles in the triangle in-
satisfactorily for the vertical shifts. We were able to showtroduced in section Model. Let the dimensionless displace-
that (a) these shifts increase & and (b) the three fields ment vector[u;(s,n),u,(s,n)], describe the motion of the
characteristic of th¢l,1] approximant approach limits inde- s,nth particle relative to the equilibrium condition in the ab-
pendent ofN for large N. The correction terms drop off as sence of gravity. If we introduce the multidimensional vector

7=[u4(1,2),u»(1,2),us(2,2),ux(2,2), ... ,u;(N,N),us(N,N)] (A1)
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then we can then write the equations of motion for the tri-the two ratiosp)/ ¢f , 65/ ¢y are a direct consequence of the

angle particles in the form y dependence of the matrM. Further, if ¢ remains posi-
. tive, i.e., nonzero, for all positive values of the spring con-
7=M(y)7+4g, (A2)  stant ratio,y, then the triangle under gravity has no singular

. ) . o . equilibrium displacement solutions.
whereM is a square matrix describing the spring interactions | et ys now consider small oscillations about this equilib-
between the particles, see E@8), (3) and the edge condi- i m state. Set

tions in Ref.[1]. It is a function of the spring constant ratio

¥ g is a vector describing the dimensionless gravitation- 7=+ A5 expiot). (AB)
al force acting on the particles. It has the forrg,
2[0!1'04’_0 cee ,Oé,]]-a Then the normal mode frequencies are solutions to the eigen-
-0_ —1=
7=-M"g (A3) defM — w?l|=0. (A7)
or ) _ )
In particular, the product of all the eigenvalues is equal to the
. m(y) . determinant of the matrix, i.e.,
7'=— =0, (A4)
defM(7)] .
wherem(y) is the matrix array of the cofactors & (). If Hl w?=detM, (A8)
=

we compare this expression with the equivalent result in Eq.

(5) above, we conclude that wheres=N(N+1)/s and w; is theith normal mode fre-

(a) ry¢3‘(fy)ocdet|\/| (A5) quency. Thus ifd)Q remains positive for all positive values of

the spring constant ratioy, then the state described by the

and(b) ¢, ¢ are each proportional to an appropriate linearsolution 7° is a stable equilibrium state for all positive val-
combinations of cofactors d¥1. Thus they dependence of ues ofy.
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