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Thermodynamic limit in the elastic triangle: Padé approximants
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The equilibrium properties of a triangular pile ofN rows of particles, interconnected by linear springs and
subjected to gravity are explored. A preliminary algebraic investigation of the smallN value case suggests that
the particle displacement field can be represented by low order Pade´ approximants.@1,1# Padéapproximant
representations are introduced for the horizontal and vertical displacement field components. Each representa-
tion contains three polynomials in the particle position coordinates. In the vertical displacement case the
polynomials are successfully fitted to numerical solutions of the equilibrium equations. The resulting expres-
sion exhibits a thermodynamic limit with 1/N corrections. This procedure fails in the horizontal case. It is
suspected that a higher order Pade´ approximant is required.
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I. INTRODUCTION

In two earlier papers@1,2# we discussed the equilibrium
properties of a triangular pile of particles, interconnected
linear springs and subjected to the force of gravity. In R
@1# the equilibrium state was determined from a numeri
analysis of the particle equilibrium conditions. The resu
showed~a! an unexpected richness in behavior in a sim
model and~b! evidence of a thermodynamic limit@3,4# in
triangles with'100 layers. Previous work@5–8# on the ther-
modynamic limit has been restricted to homogeneous
tems in uniform equilibrium states. With the pile model w
have a quite different situation, namely, a homogeneous
tem in nonuniform equilibrium. In the second paper, Ref.@2#,
we attempted to obtain an algebraic solution to the equi
rium problem of the triangle of particles. We used perturb
tion theory based on the supposition that some springs
weaker than others. The zero order solutions did exhibit th
modynamic limit behavior; we found that corrections to t
thermodynamic limit dropped inversely as the number
rows of particles in the triangular array. In contrast, the fi
order solutions turned out to be unsatisfactory, in as muc
the expansion parameter proved to be a function of the
of the triangle—an inappropriate result for a thermodynam
limit discussion.

In the present paper we describe another attempt to ob
an algebraic solution to the equilibrium conditions. We retu
to the homogeneous model of Ref.@1# and explore, using
MAPLE™, the algebraic nature of the equilibrium solutio
We are restricted by computing capacity considerations
sizes of triangles well below the thermodynamic limit seen
Ref. @1#. However, the results we obtain suggest that P´
approximants@9,10# could provide suitable representations
describe the equilibrium solutions for triangles beyond
algebraic scope ofMAPLE™. We explore this avenue using
mixture of @1,1# Padéapproximants and numerical solution
to the equilibrium conditions. This tactic proves to be sa
factory for the field describing the vertical shifts of the pa
ticles but is unsatisfactory for the horizontal shifts. To o
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knowledge, this is first reported use of Pade´ approximants in
a thermodynamic limit discussion.

The triangle model and the equilibrium conditions are d
scribed in the following section. The results of theMAPLE™
analysis are given in Sec. II A. The Pade´ approximant is
introduced in Sec. II B and applied to the problem of t
horizontal and vertical shifts in Secs. II C, II D, and II E
Section III contains a brief summary of our results.

Model

Consider a regular, triangular array of particles withN
rows. We label the rowsn51,2, . . . ,N and the particles
within a row from the lefts51,2, . . . ,n, Fig. 1. Each par-
ticle has a common massm and is connected to its six neigh
bors by linear springs. The springs have equilibrium leng
a, a8 and spring constantsl, l8; the inner angle isu. We
introduce a set of Cartesian axes with origin in the middle
the base,x1 axis through the base particles andx2 axis
through the apex. The parametersa, a8, u can be used to
introduce scaled position coordinates,

FIG. 1. Triangular array of particles and springs in equilibriu
in the absence of gravity. The rows are labeled,n51,2, . . . ,N and
the particles within rows are labeleds51,2, . . . ,n. The bottom
row, n5N, is in contact with a solid smooth line. The spring
connecting particles between rows are characterized by unstret
lengtha, spring constantl, and the in row springs by (a8,l8).
©2002 The American Physical Society03-1
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A. H. OPIE AND J. GRINDLAY PHYSICAL REVIEW E65 041303
x15~2s2n21!/N, x25~N2n!/N, ~1!

with scale factors,Na cosu, Na sinu, respectively, see Ref
@2#. Thus the particle at the lower right-hand corner has
ordinates (121/N,0) and that at the apex coordinates~0,1!.

This two-dimensional plane array of particles is in eq
librium under the actions of the unstretched springs. Now
us suppose that~a! gravity is switched on and acts in th
direction of the negativex2 axis and~b! the bottom layer of
particles is supported to prevent any vertical motion of
row of n5N particles. The particles have new equilibriu
positions. Let the shift in equilibrium of the (n,s)th particle
be denoted by the dimensionless pair of compone
@u1(s,n),u2(s,n)#, with scale factors, (mg/l)/(sinu cosu)
and (mg/l)/sin2 u, respectively, see Ref.@2#: g is the accel-
eration due to gravity. These displacements are determ
by the set of equilibrium conditions for the particles in t
triangular array. For an interior particle the equilibrium co
ditions take the form, see Ref.@2# in the horizontal direction

05g@u1~n,s11!22u1~n,s!1u1~n,s21!#1@u1~n21,s!

1u1~n21,s21!1u1~n11,s!1u1~n11,s11!

24u1~n,s!#1@u2~n21,s!2u2~n21,s21!

1u2~n11,s!2u2~n11,s11!#, ~2!

and in the vertical direction

15@u1~n21,s!2u1~n21,s21!1u1~n11,s!

2u1~n11,s11!#1@u2~n21,s!1u2~n21,s21!

1u2~n11,s!1u2~n11,s11!24u2~n,s!#, ~3!

where

g5l8 sec2 u/l. ~4!

The spring constantsl, l8 are positive quantities and henc
g>0. The equilibrium conditions for particles on the edg
of the triangle have different forms from Eqs.~2!, ~3!. They
can be found in Ref.@1#.

The solutions to the equilibrium conditions for theN(N
11)/2 particles are functions of position coordinatesx1 , x2 ,
pile size N, and the ratiog, Eq. ~4!. The effect of gravity
occurs through the displacement scale factors listed in
previous paragraph.

II. PADÉ APPROXIMANTS †9,10‡

A. Algebraic solutions

The programMAPLE™ can be used to obtain explicit a
gebraic expressions for the solutions to the triangle equ
rium conditions forN<20. Utilizing this program we find
the following results.

The equilibrium solutions are of the form

u1~x1 ,x2 ,g!5
N2

g

f1
N~x1 ,x2 ,g!

f0
N~g!

,
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u2~x1 ,x2 ,g!5
N2

g

f2
N~x1 ,x2 ,g!

f0
N~g!

, ~5!

where thef’s are polynomials in the parameterg of the form

f0
N5(

l 50

r

cl
~0!g l , ~6!

f1
N5(

l 50

r

cl
~1!~x1 ,x2!g l , ~7!

and

f2
N5(

l 50

r 11

cl
~2!~x1 ,x2!g l . ~8!

The upper limits for the sums are

r 5N~N22!/4, N even and r 5~N21!2/4, N odd.

~9!

We may think off1
N , f2

N as fields within the triangle.
In the case off0

N and fixedN, the coefficientscl
(0) in-

crease in magnitude with increasing indexl until about l
;r /2 and then decrease. The maximum value ofcl

(0) in-
creases dramatically with increasing size ofN. For example,
in the caseN58, f0

8 is a polynomial of degree 12; the max
mum coefficient has a value'104 and occurs for theg8

term. In the caseN520, the polynomial is of degree 90 an
the maximum coefficient has a value'1010 for theg17 term.
In the case of the other twof’s, f1

N , f2
N , the sets coeffi-

cientscl
(1) , cl

2 vary across the triangle,~7!, ~8! but exhibit
the same pattern, i.e., maximum values occurring at abol
;r /2 and dramatic increases with increasingN.

We know from the numerical solutions described in R
@1# that the fieldsf1

N/f0
N and f2

N/f0
N are independent ofN

for large enoughN. This result appears, at first sight, to be
odds with the polynomial properties noted above,~significant
changes with increasingN!. To explore this point further,
consider the special case of the displacement of the co

TABLE I. Real roots of the two polynomialsf0
8 andf0

8 @Eq. ~5!#.

f0 f1

20.1685 20.1659
20.2644 20.2997
20.4411
20.6048
20.7318 20.7870
21.1435
21.3959 21.3958
22.6707 22.6881
23.0734
26.7707 28.1921

213.3870 213.7176
225.6843 225.5090
3-2
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THERMODYNAMIC LIMIT IN THE ELASTI C . . . PHYSICAL REVIEW E 65 041303
particle, ~N,N! in the triangle withN58. For this particle
u250 andf0

8, f1
8 are polynomials of degree 12 ing. The

real roots off0
8, f1

8 are given in Table I. We note that~a! all
the roots off0 are negative and~b! for most of the roots of
f0 there is a similarly sized root inf1 . We discuss the
consequences of~a! in the Appendix. Given property~b! and
positive values ofg ~the appropriate physical range for
ratio of two positive elastic constants!, we can expect an
approximate cancellation of these pairs in the ratiof0

8/f1
8.

This ‘‘approximate cancellation’’ reduces the ratio of tw
high order polynomials to a ratio of two lower order polyn
mials. Similar results were obtained for different sizes
triangles. In our view the cancellation process describ
above is a likely explanation of the thermodynamic lim
behavior seen in general in the ratios of polynomials in E
~5! @1#. We note that the three polynomials,f0

N , f1
N , andf2

N

are simply related to an equilibrium matrix array and its c
factors, see the Appendix, and thus the thermodynamic l
behavior is a direct consequence of properties of this ma
The cancellation process also suggests that one might
displacement representations in terms of ratios of low or
polynomials ing. This is a well-recognized technique; th
ratios are referred to as Pade´ approximants@9,10#.

To explore the feasibility of a Pade´ approximant represen
tation, consider again the corner particle~N,N! with displace-
mentu1 . We usedMAPLE™ to obtain an explicit power se
ries expression in (g21) for the quantity gu1 /N2

5f1
N/f0

N , Eq. ~5!. We then applied theMAPLE™ Padépack-
age to this series to calculate the@1,1# and @5,5# Padéap-
proximants. We show the results for two differentg values
and four different triangle sizesN in Table II. From this data
we see that the@1,1# Padéapproximant represents the di
placement with better than 1% accuracy.

As we have noted above, theMAPLE™ algebraic program
will not give solutions to the equilibrium conditions forN
.20, i.e., well before the thermodynamic limit behavior se
in Ref. @1#. To explore the properties of displacements
larger piles our strategy will be to~a! represent the horizonta

TABLE II. Exact and approximate results for the horizontal d
placement of the (N,N) particle for four differentN’s and two
different spring constant ratios. All the results were obtained fr
MAPLE™.

N Solution g50.4 g54.0

8 Exact 0.232 757 704 2 0.027 146 109 70
@5,5# 0.232 757 704 7 0.027 146 098
@1,1# 0.2331 0.027 07

12 Exact 0.241 222 774 0.029 390 667 44
@5,5# 0.242 122 279 8 0.029 390 58
@1,1# 0.242 69 0.029 23

16 Exact 0.247 139 395 2 0.030 744 348 42
@5,5# 0.247 139 399 1 0.030 744 21
@1,1# 0.247 83 0.030 51

20 Exact 0.250 318 383 5 0.031 650 637 41
@5,5# 0.250 318 389 0 0.031 650 24
@1,1# 0.2511 0.031 35
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and vertical displacements with@1,1# Padéapproximants and
~b! determine the position andN dependence of the corre
sponding six functions from various numerical solutions
the equilibrium conditions. With this approach we hope
explore, in particular the manner in which the system reac
the thermodynamic limit.

B. Padéapproximants

We assume that the displacement solutions to the
equilibrium conditions can be written in the@1, 1# Padéform

uz~x1 ,x2 ,N,g!

5
N2

g FHz~x1 ,x2 ,N!
11~g21!Kz~x1 ,x2 ,N!

11~g21!Lz~x1 ,x2 ,N! G ,
z51,2. ~10!

Thus, in this approximation,u1 , u2 are described by six
functions,H1 , H2 , K1 , K2 , L1 , andL2 . In the special case
g51, Eq. ~10! reduces to

uz~x1 ,x2 ,N,1!5N2Hz~x1 ,x2 ,N!, z51,2. ~11!

Thus Eq.~10! can be rewritten in the form

uz~x1 ,x2 ,N,g!5
uz~x1 ,x2 ,N,1!

g

11~g21!Kz~x1 ,x2 ,N!

11~g21!Lz~x1 ,x2 ,N!

z51,2. ~12!

C. H 1 and H 2

The equilibrium conditions for anN5116 triangle with
g51 were solved numerically with a Gauss-Seidel sche
@11#. Equilibrium data, correct to seven places, were obtain
for the case of a 116 layer triangle~about 5000 iterations are
needed to achieve this accuracy!. The resulting 3 335 values
of u1 /N2 for x1>0 were used to generate the contour p
shown by the solid lines in Fig. 2, These contours descr
the function H2(x1 ,x2 ,N5116), Eq. ~11!. The analogous
results for the vertical displacement functionH1(x1 ,x2 ,N
5116) are shown in Fig. 3.

We investigated theN dependence ofH1 , H2 ~for fixed
x1 , x2! in the following fashion. Consider the particle wit
labelsn558, s544 in theN5116 triangle. This particle has
coordinates~1/8,1/2!, Eq.~1!. As we reduce the size ofN, we
find no particle withprecisely these coordinates until we
reach the value 108. In this triangle the particle with lab
n554, s541 has these coordinates. In general, if the la
number has the form

N58p14, p51,2,3, . . . , ~13!

then the particle with labels

n54p12, s53p12, p51,2,3, . . . ~14!

has coordinates position coordinates~1/8, 1/2!, see the line
fourth in Table III. The equilibrium conditions for the 1
3-3
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A. H. OPIE AND J. GRINDLAY PHYSICAL REVIEW E65 041303
triangles withN5108 toN520 in steps of eight were solve
numerically with the Gauss-Seidel scheme. The 12 value
H2(1/8,1/2,N) are shown in Fig. 4. The straight line throug
the larger values is described by the function

H25H2
`1H28/N, ~15!

with parameters

H2
`520.1837, H2850.1109. ~16!

The analogous results for the horizontal displacements
also shown in Fig. 4. The straight line is described by
function

H15H1
`1H18/N, ~17!

with parameters

H1
`50.016 592, H28520.014 018. ~18!

FIG. 2. Solid lines depict a contour map of the vertical displa
ment field scaled by 1/N2. The field values are obtained from nu
merical solutions to the equilibrium conditions,~2!, ~3! plus ~20!,
~21!, ~22! in Ref. @1# for the caseN5116, g51. The dashed lines
depict a contour plot of the functionH2

` described by the six term
polynomial representation, Eq.~21!. The coefficients in this repre
sentation are determined by the leading term in the limiting fo
~15! for each of the vertical displacements in the last six lines
Table III.
04130
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We note that, from these data

Hz>Hz
` , z51,2, ~19!

to better than 1% forN.100 and the corrections to the the
modynamic limit drop off inversely withN.

There are other points in the triangle with precisely t
same coordinates as we vary the layer numberN by certain
amounts. We list other seven in Table III. The same proc
was carried out for each of these points and obtained sim
results; at each position in the triangle bothH2 andH1 have
the form of Eqs.~15! and~17!, respectively, and the relatio
~19! holds~to better than 1%! at the maximumN value used,
see Table III. If, as seems likely, Eq.~19! holds at each point
in a large (N.100) triangle the solid line contour maps
Figs. 2 and 3 describe the position dependence ofH2

` and
H1

` , respectively. Because the contours in Figs. 2 and 3
smooth, slowly varying functions of position we attempted
representH2

` andH1
` by six term polynomials inx1 ,x2 .

-

f

FIG. 3. Solid lines depict a contour map of the horizontal d
placement field scaled by 1/N2. The field values are obtained from
numerical solutions to the equilibrium conditions,~2!, ~3! plus ~20!,
~21!, ~22! in Ref. @1# for the caseN5116, g51. The dashed lines
depict a contour plot of the functionH1

` described by the six term
polynomial representation, Eq.~20!. The coefficients in this repre
sentation are determined by the leading term in the limiting fo
~17! for each of the horizontal displacements in the first six lines
Table III.
3-4
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Consider the properly symmetrized forms

H1
`5a10x11a11x1x21a12x1x2

21a30x1
31a13x1x2

31a31x1
3x2 ,

~20!

H2
`5a01x21a02x2

21a03x2
31a21x1

2x21a04x2
41a22x1

2x2
2.

~21!

The six coefficients in Eq.~20! were determined by equatin
this function with each of the set of sixH1

` values obtained
from the horizontal displacement data for the points in
first six lines of Table III, The six coefficients in Eq.~21!
were obtained in a similar fashion from the vertical displa

FIG. 4. The asterisks indicate the points (H1 1/N), left-hand
scale.H15u1 /N2, whereu1 is the numerical solution to the equ
librium conditions for the position~1/8,1/2! in the triangles with
N528,36, . . . ,116. The straight line, Eq.~17!, passes through the
N5116,108 points with slope and intercept~18!. The filled circles
are obtained from the analogous vertical case with right-hand a
straight line~15! and slope and intercept~16!.

TABLE III. Points in the triangle used to generate the polyn
mial representations for the functions appearing in the@1,1# Padé
approximant forms. The entries in the second column generatp
51,2,3, . . . , thetriangles in which there is a particle sitting exact
on the point in the position in the first column. The third and fou
columns contain the correspondingn ands values. The last column
contains the largestN value used in the thermodynamic limit fitting
~15!, ~17!, ~24!, ~25!.

Point N n s Nmax

~1/4,0! 4p12 4p12 3p12 114
~1/3,0! 6p13 6p13 5p13 117
~1/12,2/3! 12p16 4p12 3p12 114
~1/8,1/2! 8p14 4p12 3p12 116
~1/6,1/3! 6p13 4p12 3p12 117
~3/10,1/5! 10p15 8p14 7p14 125
~0,1/2! 4p12 2p11 p11 114
~0,1/4! 8p14 6p13 3p12 116
04130
e
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ment data for the last six lines in Table III. The values of t
coefficients are shown in Table IV. With these values
generated the dashed contours in Figs. 2 and 3. We conc
from these two figures that, aside from regions near the
rimeter of the triangle, the six term polynomials, Eqs.~20!
and~21!, give good representations forH1

` andH2
` . We also

fitted the two coefficientsH18 ,H28 , Eqs.~15! and~17!, to six
term polynomials cf. Eqs.~20! and ~21! using the data from
the first six and last six points, respectively, in Table III. T
polynomial coefficients are given in Table IV. The resultin
contour maps ofH28 ,H18 are shown in Figs. 5 and 6. It i
interesting to note thatH18'21.2H1

` and H28'20.6H2
` at

each point in the triangle, compare Figs. 3 and 5 and Fig
and 6.

D. K2 and L 2

To determine the functions in the numerator and deno
nator of the Pade´ approximant form in Eq.~10! at a given
point x1 ,x2 in a given triangleN, we calculate the three
displacements uz(x1 ,x2 ,N,1), uz(x1 ,x2 ,N,g), and
uz(x1 ,x2 ,N,g8), with gÞg8Þ1 and use these values t
solve Eq.~12! for the pairKz ,Lz .

For example, we numerically calculated the vertical d
placements at the point~1/8,1/2! in the N5116 triangle for
the three valuesg51.1,1.0,0.9. Using Eq.~12! we find

K250.632 8460.000 03, L250.017960.000 03. ~22!

The error estimates in Eq.~22! are a consequence of th
uncertainty in the eighth place in the original equilibriu
data. Equation~12! is based on the assumption of a@1,1#
Padéapproximant for the displacement, Eq.~10!. As a check
on the assumption in this case we adopted the values in
~22! and used Eq.~10! to calculate the displacements at th
point ~1/8,1/2! for N5116 and a variety ofg values. We then
compared the results with the corresponding displacem
obtained from a numerical solution of the equilibrium equ
tions. As a measure of the error we introduce the quantit

D5
u2

P~x1 ,x2 ,N,g!

u2~x1 ,x2 ,N,g!
21, ~23!

whereu2
P is the Pade´ approximant, Eq.~10!, @with H2>H2

`

given in Eq.~16! andK2 ,L2 given by Eq.~22!# andu2 the
vertical displacement obtained from a numerical solution
the equilibrium conditions. The results of the check a
shown in Table V. We see that, at this point in the triang
the @1,1# Padéapproximant is good to 1% or better forg in
the range@0.4,4#.

This calculation was repeated for each of the remain
3421 particles withx1>0, in the 116 layer triangle.K2 ,L2
were calculated from theg51.1,1.0,0.9 displacements, se
Eq. ~12!. The results are shown as contour plots in Figs
and 8. As a check on the validity of the Pade´ approximation,
we calculated the error measure, Eq.~23!, for the 3422 par-
ticles in the triangle withg54. All but 15 particles had error
measures less than 0.05. The 15 particles lie in the lo
right corner of the triangle and have errors in the ran

is,
3-5
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TABLE IV. Coefficients of the polynomial representations forH1
` , H28 , H1

` , H28 , K2
` , K28 , L2

` , andL28
defined in Eqs.~17!, ~15!, ~24!, and~25!.

x1 x1x2 x1x2
2 x1

3 x1x2
3 x1

3x2

H1
` 0.3720 0.1404 21.8083 20.5080 1.2224 20.6046

H18 20.6439 0.5717 1.8171 0.5642 21.8191 1.3044
x2 x2

2 x2
3 x1

2x2 x2
4 x1

2x2
2

H2
` 20.5409 0.082 86 0.6243 2.4306 20.4254 21.1262

H28 0.3893 0.1067 21.2864 22.8064 0.9990 2.5131
1 x2 x2

2 x1
2 x1

2x2 x2
3

K2
` 0.7184 20.3096 0.2221 0.7180 0.6084 20.0301

K28 20.8706 5.775 213.210 1.3852 23.8568 9.563
L2

` 0.007 56 0.1947 20.4648 20.1556 0.2498 0.2440
L28 2.6797 6.171 213.674 20.1698 21.7302 9.686
r-
e

.0
le
l

six
.

o of
~0.05,0.63!. For g50.4 a similar calculation yields 28 pa
ticles in the lower right corner with errors in the rang
~0.05,0.25!; the remaining error measures are less than 0
We conclude that, for 99.2% of the particles in the triang
the @1,1# Padéapproximant, Eq.~10!, represents the vertica
displacements to better than 5% in the range 0.4<g<4.0.

FIG. 5. A contour plot of the functionH28 described by the six
term polynomial representation, Eq.~21!. The coefficients in this
representation are determined by theH28 term in the limiting form
~15! for each of the vertical displacements in the last six lines
Table III.
04130
5.
,

To begin the discussion of the largeN behavior ofK2 ,L2 ,
we consider again the particle at the point~1/8,1/2!. The
values ofK2 ,L2 for N5116 are given in Eq.~22!. We re-
peated this calculation for the same point for each of the
triangles withN5108 to N568 in steps of eight, see Eqs
~13!, ~14!, and the associated discussion. TheK2 ,L2 values

f

FIG. 6. A contour plot of the functionH18 described by the six
term polynomial representation, Eq.~20!. The coefficients in this
representation are determined by theH18 term in the limiting form
~17! for each of the horizontal displacements in the first six lines
Table III.
3-6
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TABLE V. Error, Eq. ~23!, in the @1,1# Padéapproximant, Eq.~10!, for the vertical displacement at th
point ~1/8,1/2! in the triangleN5116 for different spring constant ratios. TheK2 , L2 values, Eq.~22!, are
calculated from the displacements wheng51.1,1.0,0.9.

g 4.0 2.0 1.3 1.2 0.8 0.7 0.4

D 21.231022 22.431023 21.131024 23.031025 4.931025 2.331024 3.431023
e
in

ce-
in

n-

ar-
are plotted as functions of 1/N in Figs. 9 and 10. From thes
graphs we conclude that for large triangles at the po
~1/8,1/2!

K25K2
`1K28/N, ~24!

L25L2
`1L28/N, ~25!

with

K2
`50.631260.0002, K2850.180.02, ~26!

L2
`50.018560.0001, L28520.0760.005. ~27!

FIG. 7. A contour plot of the quantityK2 in the Pade´ @1,1#
approximant for the vertical displacement, Eq.~10!. TheK2 values
used to generate this map were obtained by solving forK2 andL2

from Eq. ~12! using the vertical displacement forg51.1,1.0,0.9 at
each of the 3421 particles in the right side of theN5116 triangle.
04130
t
The same process was carried out for the vertical displa
ments of the remaining five of the last six points listed
Table III. We find that at each pointK2 and L2 have the
forms shown in Eqs.~24! and ~25!. However, in contrast to
theH-function case, see Eq.~19!, atN'100,K2 differs from
K2

` by about 5% andL2 from L2
` by about 20%. The six

values ofK2
` were fitted to a six term polynomial represe

tation of the form

K2
`5b001b01x21b02x2

21b20x1
21b21x1

2x21b03x2
3.

~28!

The calculated coefficients are shown in Table IV. We c
ried out the same fitting process forK28 ,L2

` ,L28 . The corre-

FIG. 8. A contour plot of the quantityL2 in the Pade´ @1,1#
approximant for the vertical displacement, Eq.~10!. TheL2 values
used to generate this map were obtained by solving forK2 andL2

from Eq. ~12! using the vertical displacement forg51.1,1.0,0.9 at
each of the 3421 particles in the right side of theN5116 triangle.
3-7
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FIG. 9. The asterisks indicate the poin
(K2,1/N). K2 is the Pade´ @1,1# function, Eq.
~10!, calculated from the vertical equilibrium dis
placements for the position~1/8,1/2! in the tri-
angles withN568,76, . . . ,116 and thevaluesg
51.1,1.0,0.9. The straight line, Eq.~24!, passes
through theN5116,108 points with slope and
intercept, Eq.~26!.
ou
io
4,

in

ce

E

nd
y,

he
sponding coefficients are also given in Table IV. The cont
maps generated by the six term polynomial representat
for K2

` ,L2
` ,K28 ,L28 are shown in Figs. 11, 12, 13, and 1

respectively.
Figure 7 displays a contour map ofK2 calculated from all

the vertical displacements in a triangle with 116 layers;
contrast, Fig. 11 is a contour map ofK2

` generated from a
polynomial representation based on the largeN behavior of
the vertical displacements of six particles. The differen
between the two maps are in part due to the fact thatK2

'K2
` is a poor approximation atN5116 and in part due to

the inadequacy of a six term polynomial representation,
04130
r
ns

s

q.

~28!. Similar remarks hold for the pair of maps in Figs. 8 a
12. Here theL2'L2

` approximation is even less satisfactor
see above.

The results described above suggest that the largeN be-
havior of the vertical displacements can be written in t
form

u2~x1 ,x2 ,N,g!5
N2

g
@H2

`1H28/N#

3F11~g21!~K2
`1K28/N!

11~g21!~L2
`1L28/N! G , ~29!
e

-

t

FIG. 10. The asterisks indicat
the points (L2,1/N). L2 is the
Padé@1,1# function, Eq.~10!, cal-
culated from the vertical equilib-
rium displacements for the posi
tion ~1/8,1/2! in the triangles with
N568,76, . . . ,116 and thevalues
g51.1,1.0,0.9. The straigh
line, Eq. ~24!, is a least square
fit through the points N
5116,108,100,92 points with
slope and intercept, Eq.~26!.
3-8
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THERMODYNAMIC LIMIT IN THE ELASTI C . . . PHYSICAL REVIEW E 65 041303
whereH2
` , H28 , K2

` , K28 , L2
` , andL28 are functions only of

position. Thus in the thermodynamic limit of arbitrarily larg
N the vertical displacement is

u2
`~x1 ,x2 ,g!5

N2H2
`~x1 ,x2!

g F11~g21!K2
`~x1 ,x2!

11~g21!L2
`~x1 ,x2! G ,

~30!

and the correction to thermodynamic limit drops off i
versely withN. As a check on the adequacy of the six te
polynomial representations forK2

` ,K28 ,L2
` ,L28 , Table IV, we

used the expression in Eq.~29! plus the polynomial repre
sentations to calculateu2 /N2 for the particles in anN
5116 triangle andg54.0. The results are shown as dash
lines in the contour map Fig. 15. The solid lines are obtain
from a numerical solution of the equilibrium conditions f
the same system. The analogous comparison for the cag
50.4 is shown in Fig. 16. These two figures indicate that
six term polynomial representations plus the Pade´ @1,1# form
provide an adequate algebraic representation for the ver

FIG. 11. A contour plot of the functionK2
` described by the six

term polynomial representation, Eq.~28!. The coefficients in this
representation are determined by theK2

` term in the limiting form
~24! for each of the vertical displacements in the last six lines
Table III.
04130
d
d

e

al

displacement fieldu2 for g in the range~0.4,4.0!. We expect
that additional terms in the polynomial representations wo
give closer agreement with the numerical solutions to
equilibrium conditions.

E. K1 and L 1

There are two potential problems with the@1,1# Padéap-
proximant representation in Eq.~10!. The first problem is a
practical one. IfKz andLz are close in value, then Eq.~12!
gives

guz~N,g!/uz~N,1!>11
~g21!d

11~g21!Lz
, ~31!

where Kz5Lz1d and udu!1. When d50, Kz and Lz are
indeterminate. Whend is very small but not zero, then
guz(N,g)/uz(N,1) can differ from unity by an amount com
parable to the numerical error in this ratio, i.e., there can
a significant degradation in accuracy when we apply Eq.~12!

f

FIG. 12. A contour plot of the functionL2
` described by the six

term polynomial representation, see Eq.~28!. The coefficients in
this representation are determined by theL2

` term in the limiting
form ~25! for each of the vertical displacements in the last six lin
of Table III.
3-9
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A. H. OPIE AND J. GRINDLAY PHYSICAL REVIEW E65 041303
to two differentg values to determineKz andLz ~this is the
approach used successfully in the preceding section to ob
K2 ,L2!.

The second potential problem is the existence of sin
larities. If at a given point (x1 ,x2) in a given triangle withN
layers,

11~g21!Lz~x1 ,x2!50 ~32!

for some positive value ofg then the@1,1# Padéapproximant
is infinite and so fails as a representation for the displa
ment components~which we know to be finite forg.0!.
Equation~32! has the following properties.~i! If L,0 then
g.1, ~ii ! if 0 ,L,1 then g,0, ~iii ! if 1 ,L then 0,g
,1. Since the physics of the system requiresg.0, there is a
potential for a singular@1,1# Padéapproximant only when
L,0 and 1,L.

In the case of the vertical displacements 0,L2,1 andL2
is distinctly smaller thanK2 everywhere in the triangle an
hence neither of these problems occurs in the vertical
placement field.

FIG. 13. A contour plot of the functionKz8 described by the six
term polynomial representation, see Eq.~28!. The coefficients in
this representation are determined by theK28 term in the limiting
form ~24! for each of the vertical displacements in the last six lin
of Table III.
04130
in
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In contrast, both problems occur in the horizontal d
placement case. Following the approach described in S
II D, we calculated the horizontal displacements forg
51.1,1.0,0.9 and used them to determine the quanti
K1 ,L1 for each particle in the right side of the triangleN
5116. Three significant observations were made.

~a! Along the linex251/4, K1'L1 . As a consequence
significant loss of accuracy occurred in the region about
line.

~b! The contour maps ofK1 and L1 are distinctly more
convoluted than those forK2 and L2 , Figs. 7 and 8. As a
result, six term polynomial representations are likely to
quite inadequate.

~c! There are regions in the triangle in whichL1,0 and
other regions in which 1,L1 . These give rise to a number o
singular Pade´ approximant representations in the range 0
<g<4.0.

While ~a! and ~b! are merely computational inconvenience
which could be circumvented, observation~c! destroys the
viability of the @1,1# Padéapproximant as a representatio

s

FIG. 14. A contour plot of the functionL28 described by the six
term polynomial representation, see Eq.~28!. The coefficients in
this representation are determined by theL28 term in the limiting
form ~25! for each of the vertical displacements in the last six lin
of Table III.
3-10
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for the horizontal displacement field. If we are to use Pa´
approximants foru1 , it must be of higher order. In view o
the singularity problem in@1,1#, the @1,2# approximant is the
most likely candidate@12#. We shall not pursue this problem
here.

III. SUMMARY

We have explored the feasibility of~a! equating the equi-
librium displacement shifts in theN layer triangle of particles
with @1,1# Padéapproximants and~b! representing the func
tions in the approximants by six term polynomials in t
position coordinates of the particles. The program work
satisfactorily for the vertical shifts. We were able to sho
that ~a! these shifts increase asN2 and ~b! the three fields
characteristic of the@1,1# approximant approach limits inde
pendent ofN for large N. The correction terms drop off a

FIG. 15. Contour map; solid lines describe the fieldu2 /N2 cal-
culated from the equilibrium conditions for theN5116 and spring
constant ratiog54.0; dashed lines describe the fieldu2

p/N2 calcu-
lated from the@1,1# Padéapproximant form, Eq.~10!, with the
polynomial representations forH2

` , H28 , K2
` , K28 , L2

` , L28 , see
Table IV, andN5116.
04130
e

d

1/N. In the case of the horizontal shifts, the@1,1# Padéap-
proximant fails because of the presence of singularities in
ratio of spring constantsg.
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APPENDIX

Consider the dynamics of the particles in the triangle
troduced in section Model. Let the dimensionless displa
ment vector,@u1(s,n),u2(s,n)#, describe the motion of the
s,nth particle relative to the equilibrium condition in the a
sence of gravity. If we introduce the multidimensional vec

FIG. 16. Contour map; solid lines describe the fieldu2 /N2 cal-
culated from the equilibrium conditions for theN5116 and spring
constant ratiog50.4; dashed lines describe the fieldu2

p/N2 calcu-
lated from the@1,1# Padéapproximant form, Eq.~10!, with the
polynomial representations forH2

` , H28 , K2
` , K28 , L2

` , L28 , see
Table IV, andN5116.
hW 5@u1~1,1!,u2~1,1!,u1~2,1!,u2~2,1!, . . . ,u1~N,N!,u2~N,N!# ~A1!
3-11
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then we can then write the equations of motion for the
angle particles in the form

hẄ 5M ~g!hW 1gW , ~A2!

whereM is a square matrix describing the spring interactio
between the particles, see Eqs.~2!, ~3! and the edge condi
tions in Ref.@1#. It is a function of the spring constant rati
g; gW is a vector describing the dimensionless gravitatio
al force acting on the particles. It has the form,gW
5@0,1,0,1,0, . . . ,0,1#.

In equilibrium hW 5hW 0, where

hW 052M21gW ~A3!

or

hW 052
m~g!

det@M ~g!#
gW , ~A4!

wherem(g) is the matrix array of the cofactors ofM (g). If
we compare this expression with the equivalent result in
~5! above, we conclude that

~a! gf0
N~g!}detM ~A5!

and~b! f1
N ,f2

N are each proportional to an appropriate line
combinations of cofactors ofM . Thus theg dependence o
04130
-

s

-

q.

r

the two ratiosf1
N/f0

N ,f2
N/f0

N are a direct consequence of th
g dependence of the matrixM . Further, iff0

N remains posi-
tive, i.e., nonzero, for all positive values of the spring co
stant ratio,g, then the triangle under gravity has no singu
equilibrium displacement solutions.

Let us now consider small oscillations about this equil
rium state. Set

hW 5hW 01DhW exp~ ivt !. ~A6!

Then the normal mode frequencies are solutions to the eig
value problem

detuM2v2I u50. ~A7!

In particular, the product of all the eigenvalues is equal to
determinant of the matrix, i.e.,

)
i 51

s

v i
25detM , ~A8!

where s5N(N11)/s and v i is the i th normal mode fre-
quency. Thus iff0

N remains positive for all positive values o
the spring constant ratio,g, then the state described by th
solutionhW 0 is a stable equilibrium state for all positive va
ues ofg.
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